

Yapsy: Yet Another Plugin SYstem

A simple plugin system for Python applications

Quick links:

	IPlugin

	PluginManager

	PluginInfo

	Built-in Extensions

	General advices and troubleshooting

On this page

	Overview

	Getting started

	Make it your own

	More sophisticated plugin classes

	Enhance the plugin manager’s interface

	Modify plugin descriptions and detections

	Modify the way plugins are loaded

	Showcase and tutorials

	Development

	Contributing or forking ?

	License

	Forge

	References

	Indices and tables

Overview

Yapsy’s main purpose is to offer a way to easily design a plugin
system in Python, and motivated by the fact that many other Python
plugin system are either too complicated for a basic use or depend on
a lot of libraries. Yapsy only depends on Python’s standard library.

Yapsy basically defines two core classes:

	a fully functional though very simple PluginManager class

	an interface IPlugin which defines the interface of plugin
instances handled by the PluginManager

Getting started

The basic classes defined by Yapsy should work “as is” and enable
you to load and activate your plugins. So that the following code
should get you a fully working plugin management system:

from yapsy.PluginManager import PluginManager

Build the manager
simplePluginManager = PluginManager()
Tell it the default place(s) where to find plugins
simplePluginManager.setPluginPlaces(["path/to/myplugins"])
Load all plugins
simplePluginManager.collectPlugins()

Activate all loaded plugins
for pluginInfo in simplePluginManager.getAllPlugins():
 simplePluginManager.activatePluginByName(pluginInfo.name)

Note

The plugin_info object (typically an instance of
IPlugin) plays as the entry point of each
plugin. That’s also where Yapsy ceases to guide you: it’s
up to you to define what your plugins can do and how you
want to talk to them ! Talking to your plugin will then look
very much like the following:

Trigger 'some action' from the loaded plugins
for pluginInfo in simplePluginManager.getAllPlugins():
 pluginInfo.plugin_object.doSomething(...)

	
yapsy.NormalizePluginNameForModuleName(pluginName)

	Normalize a plugin name into a safer name for a module name.

Note

may do a little more modifications than strictly
necessary and is not optimized for speed.

	
yapsy.PLUGIN_NAME_FORBIDEN_STRING = ';;'

	
Warning

This string (‘;;’ by default) is forbidden in plugin
names, and will be usable to describe lists of plugins
for instance (see ConfigurablePluginManager)

Make it your own

For applications that require the plugins and their managers to be
more sophisticated, several techniques make such enhancement easy. The
following sections detail the most frequent needs for extensions
and what you can do about it.

More sophisticated plugin classes

You can define a plugin class with a richer interface than
IPlugin, so long as it inherits from IPlugin, it should work the
same. The only thing you need to know is that the plugin instance is
accessible via the PluginInfo instance from its
PluginInfo.plugin_object.

It is also possible to define a wider variety of plugins, by defining
as much subclasses of IPlugin. But in such a case you have to inform
the manager about that before collecting plugins:

Build the manager
simplePluginManager = PluginManager()
Tell it the default place(s) where to find plugins
simplePluginManager.setPluginPlaces(["path/to/myplugins"])
Define the various categories corresponding to the different
kinds of plugins you have defined
simplePluginManager.setCategoriesFilter({
 "Playback" : IPlaybackPlugin,
 "SongInfo" : ISongInfoPlugin,
 "Visualization" : IVisualisation,
 })

Note

Communicating with the plugins belonging to a given category
might then be achieved with some code looking like the
following:

Trigger 'some action' from the "Visualization" plugins
for pluginInfo in simplePluginManager.getPluginsOfCategory("Visualization"):
 pluginInfo.plugin_object.doSomething(...)

Enhance the plugin manager’s interface

To make the plugin manager more helpful to the other components of an
application, you should consider decorating it.

Actually a “template” for such decoration is provided as
PluginManagerDecorator, which must be inherited in order to
implement the right decorator for your application.

Such decorators can be chained, so that you can take advantage of the ready-made decorators such as:

ConfigurablePluginManager

Implements a PluginManager that uses a configuration file to
save the plugins to be activated by default and also grants access
to this file to the plugins.

AutoInstallPluginManager

Automatically copy the plugin files to the right plugin directory.

A full list of pre-implemented decorators is available at Built-in Extensions.

Modify plugin descriptions and detections

By default, plugins are described by a text file called the plugin
“info file” expected to have a “.yapsy-plugin” extension.

You may want to use another way to describe and detect your
application’s plugin and happily yapsy (since version 1.10) makes it
possible to provide the PluginManager with a custom strategy for
plugin detection.

See IPluginLocator for the required interface of such
strategies and PluginFileLocator for a working example of such
a detection strategy.

Modify the way plugins are loaded

To tweak the plugin loading phase it is highly advised to re-implement
your own manager class.

The nice thing is, if your new manager inherits PluginManager, then it will naturally fit as the start point of any decoration chain. You just have to provide an instance of this new manager to the first decorators, like in the following:

build and configure a specific manager
baseManager = MyNewManager()
start decorating this manager to add some more responsibilities
myFirstDecorator = AFirstPluginManagerDecorator(baseManager)
add even more stuff
mySecondDecorator = ASecondPluginManagerDecorator(myFirstDecorator)

Note

Some decorators have been implemented that modify the way
plugins are loaded, this is however not the easiest way to
do it and it makes it harder to build a chain of decoration
that would include these decorators. Among those are
VersionedPluginManager and
FilteredPluginManager

Showcase and tutorials

Yapsy ‘s development has been originally motivated by the MathBench [http://mathbench.sourceforge.net]
project but it is now used in other (more advanced) projects like:

	peppy [http://www.flipturn.org/peppy/] : “an XEmacs-like editor in Python. Eventually. “

	MysteryMachine [http://trac.backslashat.org/MysteryMachine] : “an application for writing freeform games.”

	Aranduka [https://github.com/ralsina/aranduka] : “A simple e-book manager and reader”

	err [http://gbin.github.com/err/] : “a plugin based chatbot”

	nikola [http://nikola.ralsina.com.ar/] : “a Static Site and Blog Generator”

Nowadays, the development is clearly motivated by such external projects and the enthusiast developpers who use the library.

If you’re interested in using yapsy, feel free to look into the following links:

	General advices and troubleshooting

	A minimal example on stackoverflow [http://stackoverflow.com/questions/5333128/yapsy-minimal-example]

	Making your app modular: Yapsy [http://ralsina.me/weblog/posts/BB923.html] (applied to Qt apps)

	Python plugins with yapsy [https://github.com/MicahCarrick/yapsy-gtk-example] (applied to GTK apps)

Development

Contributing or forking ?

You’re always welcome if you suggest any kind of enhancements, any new
decorators or any new pluginmanager. Even more if there is some code
coming with it though this is absolutely not compulsory.

It is also really fine to fork the code ! In the past, some people
found Yapsy just good enough to be used as a “code base” for their
own plugin system, which they evolved in a more or less incompatible
way with the “original” Yapsy, if you think about it, with such a
small library this is actually a clever thing to do.

In any case, please remember that just providing some feedback on where
you’re using Yapsy (original or forked) and how it is useful to you,
is in itself a appreciable contribution :)

License

The work is placed under the simplified BSD [http://www.opensource.org/licenses/bsd-license.php] license in order to make
it as easy as possible to be reused in other projects.

Please note that the icon is not under the same license but under the
Creative Common Attribution-ShareAlike [http://creativecommons.org/licenses/by-sa/3.0/] license.

Forge

The project is hosted by Sourceforge [http://sourceforge.net/projects/yapsy/] where you can access the code, documentation and a tracker to share your feedback and ask for support.

[image: SourceForge.net]

Any suggestion and help are much welcome !

Yapsy is also tested on the continous integration service TravisCI [https://travis-ci.org/tibonihoo/yapsy]:
[image: Continuous integration tests] [image: Code coverage from continuous integration tests.] [https://coveralls.io/r/tibonihoo/yapsy?branch=master]

A few alternative sites are available:

	Yapsy’s sources are mirrored on GitHub [https://github.com/tibonihoo/yapsy/].

	To use pip for a development install [http://pip.readthedocs.org/en/latest/reference/pip_install.html#vcs-support] you can do something like:

pip install -e "git+https://github.com/tibonihoo/yapsy.git#egg=yapsy&subdirectory=package"
pip install -e "hg+http://hg.code.sf.net/p/yapsy/code#egg=yapsy&subdirectory=package"

	A development version of the documentation is available on ReadTheDoc [https://yapsy.readthedocs.org].

References

Other Python plugin systems already existed before Yapsy and some
have appeared after that. Yapsy’s creation is by no mean a sign that
these others plugin systems sucks :) It is just the results of me
being slighlty lazy and as I had already a good idea of how a simple
plugin system should look like, I wanted to implement my own
1.

	setuptools [http://cheeseshop.python.org/pypi/setuptools] seems to be designed to allow applications to have a
plugin system.

	Sprinkles [http://termie.pbwiki.com/SprinklesPy] seems to be also quite lightweight and simple but just
maybe too far away from the design I had in mind.

	PlugBoard [https://pypi.python.org/pypi/PlugBoard] is certainly quite good also but too complex for me. It also
depends on zope which considered what I want to do here is way too
much.

	Marty Alchin’s simple plugin framework [http://martyalchin.com/2008/jan/10/simple-plugin-framework/] is a quite interesting
description of a plugin architecture with code snippets as
illustrations.

	stevedor [https://pypi.python.org/pypi/stevedore] looks quite promising and actually seems to make
setuptools relevant to build plugin systems.

	You can look up more example on a stackoverflow’s discution about minimal plugin systems in Python [http://stackoverflow.com/questions/932069/building-a-minimal-plugin-architecture-in-python]

	1

	All the more because it seems that my modest
design ideas slightly differ from what has been done in other
libraries.

Indices and tables

	Index

	Module Index

	Search Page

IPlugin

Role

Defines the basic interfaces for a plugin. These interfaces are
inherited by the core class of a plugin. The core class of a
plugin is then the one that will be notified the
activation/deactivation of a plugin via the activate/deactivate
methods.

For simple (near trivial) plugin systems, one can directly use the
following interfaces.

Extensibility

In your own software, you’ll probably want to build derived classes of
the IPlugin class as it is a mere interface with no specific
functionality.

Your software’s plugins should then inherit your very own plugin class
(itself derived from IPlugin).

Where and how to code these plugins is explained in the section about
the PluginManager.

API

	
class yapsy.IPlugin.IPlugin

	The most simple interface to be inherited when creating a plugin.

	
activate()

	Called at plugin activation.

	
deactivate()

	Called when the plugin is disabled.

PluginManager

Role

The PluginManager loads plugins that enforce the Plugin
Description Policy, and offers the most simple methods to activate
and deactivate the plugins once they are loaded.

Note

It may also classify the plugins in various categories, but
this behaviour is optional and if not specified elseway all
plugins are stored in the same default category.

Note

It is often more useful to have the plugin manager behave
like singleton, this functionality is provided by
PluginManagerSingleton

Plugin Description Policy

When creating a PluginManager instance, one should provide it with
a list of directories where plugins may be found. In each directory,
a plugin should contain the following elements:

For a Standard plugin:

myplugin.yapsy-plugin

A plugin info file identical to the one previously described.

myplugin

A directory ontaining an actual Python plugin (ie with a
__init__.py file that makes it importable). The upper
namespace of the plugin should present a class inheriting the
IPlugin interface (the same remarks apply here as in the
previous case).

For a Single file plugin:

myplugin.yapsy-plugin

A plugin info file which is identified thanks to its extension,
see the Plugin Info File Format to see what should be in this
file.

The extension is customisable at the PluginManager’s
instanciation, since one may usually prefer the extension to bear
the application name.

myplugin.py

The source of the plugin. This file should at least define a class
inheriting the IPlugin interface. This class will be
instanciated at plugin loading and it will be notified the
activation/deactivation events.

Plugin Info File Format

The plugin info file is a text file encoded in ASCII or UTF-8 and
gathering, as its name suggests, some basic information about the
plugin.

	it gives crucial information needed to be able to load the plugin

	it provides some documentation like information like the plugin
author’s name and a short description fo the plugin functionality.

Here is an example of what such a file should contain:

[Core]
Name = My plugin Name
Module = the_name_of_the_pluginto_load_with_no_py_ending

[Documentation]
Description = What my plugin broadly does
Author = My very own name
Version = the_version_number_of_the_plugin
Website = My very own website

Note

From such plugin descriptions, the PluginManager will
built its own representations of the plugins as instances of
the PluginInfo class.

Changing the default behaviour

The default behaviour for locating and loading plugins can be changed
using the various options exposed on the interface via getters.

The plugin detection, in particular, can be fully customized by
settting a custom plugin locator. See IPluginLocator for more
details on this.

Extensibility

Several mechanisms have been put up to help extending the basic
functionalities of the proivided classes.

A few hints to help you extend those classes:

If the new functionalities do not overlap the ones already
implemented, then they should be implemented as a Decorator class of the
base plugin. This should be done by inheriting the
PluginManagerDecorator.

If this previous way is not possible, then the functionalities should
be added as a subclass of PluginManager.

Note

The first method is highly prefered since it makes it
possible to have a more flexible design where one can pick
several functionalities and litterally add them to get an
object corresponding to one’s precise needs.

API

	
class yapsy.PluginManager.PluginManager(categories_filter=None, directories_list=None, plugin_info_ext=None, plugin_locator=None)

	Manage several plugins by ordering them in categories.

The mechanism for searching and loading the plugins is already
implemented in this class so that it can be used directly (hence
it can be considered as a bit more than a mere interface)

The file describing a plugin must be written in the syntax
compatible with Python’s ConfigParser module as in the
Plugin Info File Format

About the __init__:

Initialize the mapping of the categories and set the list of
directories where plugins may be. This can also be set by
direct call the methods:

	setCategoriesFilter for categories_filter

	setPluginPlaces for directories_list

	setPluginInfoExtension for plugin_info_ext

You may look at these function’s documentation for the meaning
of each corresponding arguments.

	
activatePluginByName(name, category='Default')

	Activate a plugin corresponding to a given category + name.

	
appendPluginCandidate(candidateTuple)

	Append a new candidate to the list of plugins that should be loaded.

The candidate must be represented by the same tuple described
in getPluginCandidates.

	
appendPluginToCategory(plugin, category_name)

	Append a new plugin to the given category.

	
collectPlugins()

	Walk through the plugins’ places and look for plugins. Then
for each plugin candidate look for its category, load it and
stores it in the appropriate slot of the category_mapping.

	
deactivatePluginByName(name, category='Default')

	Desactivate a plugin corresponding to a given category + name.

	
getAllPlugins()

	Return the list of all plugins (belonging to all categories).

	
getCategories()

	Return the list of all categories.

	
getPluginByName(name, category='Default')

	Get the plugin correspoding to a given category and name

	
getPluginCandidates()

	Return the list of possible plugins.

Each possible plugin (ie a candidate) is described by a 3-uple:
(info file path, python file path, plugin info instance)

	
getPluginInfoClass()

	DEPRECATED(>1.9): directly control that with the IPluginLocator
instance instead !

Get the class that holds PluginInfo.

	
getPluginLocator()

	Grant direct access to the plugin locator.

	
getPluginsOf(**kwargs)

	Returns a set of plugins whose properties match the named arguments provided here along with their correspoding values.

	
getPluginsOfCategory(category_name)

	Return the list of all plugins belonging to a category.

	
instanciateElement(element)

	DEPRECATED(>1.11): reimplement instead instanciateElementWithImportInfo !

Override this method to customize how plugins are instanciated.

Warning

This method is called only if
instanciateElementWithImportInfo has not been reimplemented !

	
instanciateElementWithImportInfo(element, element_name, plugin_module_name, candidate_filepath)

	Override this method to customize how plugins are instanciated.

Note

This methods recieves the ‘element’ that is a candidate
as the plugin’s main file, but also enough information to reload
its containing module and this element.

	
loadPlugins(callback=None, callback_after=None)

	Load the candidate plugins that have been identified through a
previous call to locatePlugins. For each plugin candidate
look for its category, load it and store it in the appropriate
slot of the category_mapping.

You can specify 2 callbacks: callback, and callback_after. If either of these are passed a function, (in the case of callback), it will get called before each plugin load attempt and (for callback_after), after each
attempt. The plugin_info instance is passed as an argument to
each callback. This is meant to facilitate code that needs to run for each plugin, such as adding the directory it resides in to sys.path (so imports of other files in the plugin’s directory work correctly). You can use callback_after to remove anything you added to the path.

	
locatePlugins()

	Convenience method (actually call the IPluginLocator method)

	
removePluginCandidate(candidateTuple)

	Remove a given candidate from the list of plugins that should be loaded.

The candidate must be represented by the same tuple described
in getPluginCandidates.

	
removePluginFromCategory(plugin, category_name)

	Remove a plugin from the category where it’s assumed to belong.

	
setCategoriesFilter(categories_filter)

	Set the categories of plugins to be looked for as well as the
way to recognise them.

The categories_filter first defines the various categories
in which the plugins will be stored via its keys and it also
defines the interface tha has to be inherited by the actual
plugin class belonging to each category.

	
setPluginInfoClass(picls, strategies=None)

	DEPRECATED(>1.9): directly configure the IPluginLocator instance instead !

Convenience method (actually call self.getPluginLocator().setPluginInfoClass)

When using a PluginFileLocator you may restrict the
strategies to which the change of PluginInfo class will occur
by just giving the list of strategy names in the argument
“strategies”

	
setPluginInfoExtension(ext)

	DEPRECATED(>1.9): for backward compatibility. Directly configure the
IPluginLocator instance instead !

Warning

This will only work if the strategy “info_ext” is
active for locating plugins.

	
setPluginLocator(plugin_locator, dir_list=None, picls=None)

	Sets the strategy used to locate the basic information.

See IPluginLocator for the policy that plugin_locator must enforce.

	
setPluginPlaces(directories_list)

	DEPRECATED(>1.9): directly configure the IPluginLocator instance instead !

Convenience method (actually call the IPluginLocator method)

	
updatePluginPlaces(directories_list)

	DEPRECATED(>1.9): directly configure the IPluginLocator instance instead !

Convenience method (actually call the IPluginLocator method)

	
class yapsy.PluginManager.PluginManagerSingleton

	Singleton version of the most basic plugin manager.

Being a singleton, this class should not be initialised explicitly
and the get classmethod must be called instead.

To call one of this class’s methods you have to use the get
method in the following way:
PluginManagerSingleton.get().themethodname(theargs)

To set up the various coonfigurables variables of the
PluginManager’s behaviour please call explicitly the following
methods:

	setCategoriesFilter for categories_filter

	setPluginPlaces for directories_list

	setPluginInfoExtension for plugin_info_ext

	
classmethod get()

	Actually create an instance

	
classmethod setBehaviour(list_of_pmd)

	Set the functionalities handled by the plugin manager by
giving a list of PluginManager decorators.

This function shouldn’t be called several time in a same
process, but if it is only the first call will have an effect.

It also has an effect only if called before the initialisation
of the singleton.

In cases where the function is indeed going to change anything
the True value is return, in all other cases, the False
value is returned.

PluginInfo

Role

Encapsulate a plugin instance as well as some metadata.

API

	
class yapsy.PluginInfo.PluginInfo(plugin_name, plugin_path)

	Representation of the most basic set of information related to a
given plugin such as its name, author, description…

Any additional information can be stored ad retrieved in a
PluginInfo, when this one is created with a
ConfigParser.ConfigParser instance.

This typically means that when metadata is read from a text file
(the original way for yapsy to describe plugins), all info that is
not part of the basic variables (name, path, version etc), can
still be accessed though the details member variables that
behaves like Python’s ConfigParser.ConfigParser.

Warning

	The instance associated with the details member

	variable is never copied and used to store all plugin infos. If
you set it to a custom instance, it will be modified as soon as
another member variale of the plugin info is
changed. Alternatively, if you change the instance “outside” the
plugin info, it will also change the plugin info.

Ctor Arguments:

	Plugin_name

	is a simple string describing the name of
the plugin.

	Plugin_path

	describe the location where the plugin can be
found.

Warning

	The path attribute is the full path to the

	plugin if it is organised as a directory or the
full path to a file without the .py extension
if the plugin is defined by a simple file. In the
later case, the actual plugin is reached via
plugin_info.path+'.py'.

	
author

	

	
category

	DEPRECATED (>1.9): Mimic former behaviour when what is
noz the first category was considered as the only one the
plugin belonged to.

	
copyright

	

	
description

	

	
details

	

	
is_activated

	Return the activated state of the plugin object.
Makes it possible to define a property.

	
name

	

	
path

	

	
setVersion(vstring)

	Set the version of the plugin.

Used by subclasses to provide different handling of the
version number.

	
version

	

	
website

	

Built-in Extensions

The followig ready-to-use classes give you this exact extra
functionality you need for your plugin manager:

	VersionedPluginManager

	ConfigurablePluginManager

	AutoInstallPluginManager

	FilteredPluginManager

	MultiprocessPluginManager

The following item offer customization for the way plugins are
described and detected:

	PluginFileLocator

If you want to build your own extensions, have a look at the following
interfaces:

	IPluginLocator

	PluginManagerDecorator

If you want to isolate your plugins in separate processes with the
MultiprocessPluginManager, you should look at the following
classes too:

	IMultiprocessChildPlugin

	MultiprocessPluginProxy

VersionedPluginManager

Role

Defines the basic interface for a plugin manager that also keeps track
of versions of plugins

API

	
class yapsy.VersionedPluginManager.VersionedPluginInfo(plugin_name, plugin_path)

	Gather some info about a plugin such as its name, author,
description…

	
setVersion(vstring)

	Set the version of the plugin.

Used by subclasses to provide different handling of the
version number.

	
class yapsy.VersionedPluginManager.VersionedPluginManager(decorated_manager=None, categories_filter={'Default': <class 'yapsy.IPlugin.IPlugin'>}, directories_list=None, plugin_info_ext='yapsy-plugin')

	Handle plugin versioning by making sure that when several
versions are present for a same plugin, only the latest version is
manipulated via the standard methods (eg for activation and
deactivation)

More precisely, for operations that must be applied on a single
named plugin at a time (getPluginByName,
activatePluginByName, deactivatePluginByName etc) the
targetted plugin will always be the one with the latest version.

Note

The older versions of a given plugin are still reachable
via the getPluginsOfCategoryFromAttic method.

	
getLatestPluginsOfCategory(category_name)

	DEPRECATED(>1.8): Please consider using getPluginsOfCategory
instead.

Return the list of all plugins belonging to a category.

	
getPluginsOfCategoryFromAttic(categ)

	Access the older version of plugins for which only the latest
version is available through standard methods.

	
loadPlugins(callback=None, callback_after=None)

	Load the candidate plugins that have been identified through a
previous call to locatePlugins.

In addition to the baseclass functionality, this subclass also
needs to find the latest version of each plugin.

	
setCategoriesFilter(categories_filter)

	Set the categories of plugins to be looked for as well as the
way to recognise them.

Note: will also reset the attic toa void inconsistencies.

ConfigurablePluginManager

Role

Defines plugin managers that can handle configuration files similar to
the ini files manipulated by Python’s ConfigParser module.

API

	
class yapsy.ConfigurablePluginManager.ConfigurablePluginManager(configparser_instance=None, config_change_trigger=<function ConfigurablePluginManager.<lambda>>, decorated_manager=None, categories_filter=None, directories_list=None, plugin_info_ext='yapsy-plugin')

	A plugin manager that also manages a configuration file.

The configuration file will be accessed through a ConfigParser
derivated object. The file can be used for other purpose by the
application using this plugin manager as it will only add a new
specific section [Plugin Management] for itself and also new
sections for some plugins that will start with [Plugin:...]
(only the plugins that explicitly requires to save configuration
options will have this kind of section).

Warning

when giving/building the list of plugins to activate
by default, there must not be any space in the list
(neither in the names nor in between)

The config_change_trigger argument can be used to set a
specific method to call when the configuration is
altered. This will let the client application manage the way
they want the configuration to be updated (e.g. write on file
at each change or at precise time intervalls or whatever….)

Warning

when no config_change_trigger is given and if
the provided configparser_instance doesn’t handle it
implicitely, recording the changes persistently (ie writing on
the config file) won’t happen.

	
CONFIG_SECTION_NAME = 'Plugin Management'

	

	
activatePluginByName(plugin_name, category_name='Default', save_state=True)

	Activate a plugin, , and remember it (in the config file).

If you want the plugin to benefit from the configuration
utility defined by this manager, it is crucial to use this
method to activate a plugin and not call the plugin object’s
activate method. In fact, this method will also “decorate”
the plugin object so that it can use this class’s methods to
register its own options.

By default, the plugin’s activation is registered in the
config file but if you d’ont want this set the ‘save_state’
argument to False.

	
deactivatePluginByName(plugin_name, category_name='Default', save_state=True)

	Deactivate a plugin, and remember it (in the config file).

By default, the plugin’s deactivation is registered in the
config file but if you d’ont want this set the save_state
argument to False.

	
hasOptionFromPlugin(category_name, plugin_name, option_name)

	To be called from a plugin object, return True if the option
has already been registered.

	
loadPlugins(callback=None, callback_after=None)

	Walk through the plugins’ places and look for plugins. Then
for each plugin candidate look for its category, load it and
stores it in the appropriate slot of the category_mapping.

	
readOptionFromPlugin(category_name, plugin_name, option_name)

	To be called from a plugin object, read a given option in
the name of a given plugin.

	
registerOptionFromPlugin(category_name, plugin_name, option_name, option_value)

	To be called from a plugin object, register a given option in
the name of a given plugin.

	
setConfigParser(configparser_instance, config_change_trigger)

	Set the ConfigParser instance.

AutoInstallPluginManager

Role

Defines plugin managers that can handle the installation of plugin
files into the right place. Then the end-user does not have to browse
to the plugin directory to install them.

API

	
class yapsy.AutoInstallPluginManager.AutoInstallPluginManager(plugin_install_dir=None, decorated_manager=None, categories_filter=None, directories_list=None, plugin_info_ext='yapsy-plugin')

	A plugin manager that also manages the installation of the plugin
files into the appropriate directory.

Ctor Arguments:

plugin_install_dir
The directory where new plugins to be installed will be copied.

Warning

If plugin_install_dir does not correspond to
an element of the directories_list, it is
appended to the later.

	
getInstallDir()

	Return the directory where new plugins should be installed.

	
install(directory, plugin_info_filename)

	Giving the plugin’s info file (e.g. myplugin.yapsy-plugin),
and the directory where it is located, get all the files that
define the plugin and copy them into the correct directory.

Return True if the installation is a success, False if
it is a failure.

	
installFromZIP(plugin_ZIP_filename)

	Giving the plugin’s zip file (e.g. myplugin.zip), check
that their is a valid info file in it and correct all the
plugin files into the correct directory.

Warning

Only available for python 2.6 and later.

Return True if the installation is a success, False if
it is a failure.

	
setInstallDir(plugin_install_dir)

	Set the directory where to install new plugins.

FilteredPluginManager

Role

Defines the basic mechanisms to have a plugin manager filter the
available list of plugins after locating them and before loading them.

One use fo this would be to prevent untrusted plugins from entering
the system.

To use it properly you must reimplement or monkey patch the
IsPluginOk method, as in the following example:

define a plugin manager (with you prefered options)
pm = PluginManager(...)
decorate it with the Filtering mechanics
pm = FilteredPluginManager(pm)
define a custom predicate that filters out plugins without descriptions
pm.isPluginOk = lambda x: x.description!=""

API

	
class yapsy.FilteredPluginManager.FilteredPluginManager(decorated_manager=None, categories_filter=None, directories_list=None, plugin_info_ext='yapsy-plugin')

	Base class for decorators which filter the plugins list
before they are loaded.

	
appendPluginCandidate(pluginTuple)

	Add a new candidate.

	
filterPlugins()

	Go through the currently available candidates, and and either
leaves them, or moves them into the list of rejected Plugins.

Can be overridden if overriding isPluginOk sentinel is not
powerful enough.

	
getRejectedPlugins()

	Return the list of rejected plugins.

	
isPluginOk(info)

	Sentinel function to detect if a plugin should be filtered.

info is an instance of a PluginInfo and this method is
expected to return True if the corresponding plugin can be
accepted, and False if it must be filtered out.

Subclasses should override this function and return false for
any plugin which they do not want to be loadable.

	
locatePlugins()

	locate and filter plugins.

	
rejectPluginCandidate(pluginTuple)

	Move a plugin from the candidates list to the rejected List.

	
removePluginCandidate(pluginTuple)

	Remove a plugin from the list of candidates.

	
unrejectPluginCandidate(pluginTuple)

	Move a plugin from the rejected list to into the candidates
list.

MultiprocessPluginManager

Role

Defines a plugin manager that runs all plugins in separate process
linked by pipes.

API

	
class yapsy.MultiprocessPluginManager.MultiprocessPluginManager(categories_filter=None, directories_list=None, plugin_info_ext=None, plugin_locator=None)

	Subclass of the PluginManager that runs each plugin in a different process

	
instanciateElementWithImportInfo(element, element_name, plugin_module_name, candidate_filepath)

	This method instanciates each plugin in a new process and links it to
the parent with a pipe.

In the parent process context, the plugin’s class is replaced by
the MultiprocessPluginProxy class that hold the information
about the child process and the pipe to communicate with it.

Warning

	The plugin code should only use the pipe to

	communicate with the rest of the applica`tion and should not
assume any kind of shared memory, not any specific functionality
of the multiprocessing.Process parent class (its behaviour is
different between platforms !)

See IMultiprocessPlugin.

PluginFileLocator

Role

The PluginFileLocator locates plugins when they are accessible via the filesystem.

It’s default behaviour is to look for text files with the
‘.yapsy-plugin’ extensions and to read the plugin’s decription in
them.

Customization

The behaviour of a PluginFileLocator can be customized by instanciating it with a specific ‘analyzer’.

Two analyzers are already implemented and provided here:

PluginFileAnalyzerWithInfoFile

the default ‘analyzer’ that looks for plugin ‘info files’ as
text file with a predefined extension. This implements the way
yapsy looks for plugin since version 1.

PluginFileAnalyzerMathingRegex

look for files matching a regex and considers them as being
the plugin itself.

All analyzers must enforce the

It enforces the plugin locator policy as defined by IPluginLocator and used by PluginManager.

info_ext

expects a plugin to be discovered through its plugin info file.
User just needs to provide an extension (without ‘.’) to look
for plugin_info_file.

regexp

looks for file matching the given regular pattern expression.
User just needs to provide the regular pattern expression.

All analyzers must enforce the policy represented by the IPluginFileAnalyzer interface.

API

	
class yapsy.PluginFileLocator.IPluginFileAnalyzer(name)

	Define the methods expected by PluginFileLocator for its ‘analyzer’.

	
getInfosDictFromPlugin(dirpath, filename)

	Returns the extracted plugin informations as a dictionary.
This function ensures that “name” and “path” are provided.

dirpath is the full path to the directory where the plugin file is

filename is the name (ie the basename) of the plugin file.

If callback function has not been provided for this strategy,
we use the filename alone to extract minimal informations.

	
isValidPlugin(filename)

	Check if the resource found at filename is a valid plugin.

	
class yapsy.PluginFileLocator.PluginFileAnalyzerMathingRegex(name, regexp)

	An analyzer that targets plugins decribed by files whose name match a given regex.

	
getInfosDictFromPlugin(dirpath, filename)

	Returns the extracted plugin informations as a dictionary.
This function ensures that “name” and “path” are provided.

	
isValidPlugin(filename)

	Checks if the given filename is a valid plugin for this Strategy

	
class yapsy.PluginFileLocator.PluginFileAnalyzerWithInfoFile(name, extensions='yapsy-plugin')

	Consider plugins described by a textual description file.

A plugin is expected to be described by a text file (‘ini’ format) with a specific extension (.yapsy-plugin by default).

This file must contain at least the following information:

[Core]
Name = name of the module
Module = relative_path/to/python_file_or_directory

Optionnally the description file may also contain the following section (in addition to the above one):

[Documentation]
Author = Author Name
Version = Major.minor
Website = url_for_plugin
Description = A simple one-sentence description

Ctor Arguments:

name name of the analyzer.

extensions the expected extensions for the plugin info file. May be a string or a tuple of strings if several extensions are expected.

	
getInfosDictFromPlugin(dirpath, filename)

	Returns the extracted plugin informations as a dictionary.
This function ensures that “name” and “path” are provided.

If callback function has not been provided for this strategy,
we use the filename alone to extract minimal informations.

	
getPluginNameAndModuleFromStream(infoFileObject, candidate_infofile=None)

	Extract the name and module of a plugin from the
content of the info file that describes it and which
is stored in infoFileObject.

Note

Prefer using _extractCorePluginInfo
instead, whenever possible…

Warning

infoFileObject must be a file-like object:
either an opened file for instance or a string
buffer wrapped in a StringIO instance as another
example.

Note

candidate_infofile must be provided
whenever possible to get better error messages.

Return a 3-uple with the name of the plugin, its
module and the config_parser used to gather the core
data in a tuple, if the required info could be
localised, else return (None,None,None).

Note

This is supposed to be used internally by subclasses
and decorators.

	
isValidPlugin(filename)

	Check if it is a valid plugin based on the given plugin info file extension(s).
If several extensions are provided, the first matching will cause the function
to exit successfully.

	
setPluginInfoExtension(extensions)

	Set the extension that will identify a plugin info file.

extensions May be a string or a tuple of strings if several extensions are expected.

	
class yapsy.PluginFileLocator.PluginFileLocator(analyzers=None, plugin_info_cls=<class 'yapsy.PluginInfo.PluginInfo'>)

	Locates plugins on the file system using a set of analyzers to
determine what files actually corresponds to plugins.

If more than one analyzer is being used, the first that will discover a
new plugin will avoid other strategies to find it too.

By default each directory set as a “plugin place” is scanned
recursively. You can change that by a call to
disableRecursiveScan.

	
appendAnalyzer(analyzer)

	Append an analyzer to the existing list.

	
disableRecursiveScan()

	Disable recursive scan of the directories given as plugin places.

	
gatherCorePluginInfo(directory, filename)

	Return a PluginInfo as well as the ConfigParser used to build it.

If filename is a valid plugin discovered by any of the known
strategy in use. Returns None,None otherwise.

	
getPluginNameAndModuleFromStream(infoFileObject, candidate_infofile=None)

	DEPRECATED(>1.9): kept for backward compatibility
with existing PluginManager child classes.

Return a 3-uple with the name of the plugin, its
module and the config_parser used to gather the core
data in a tuple, if the required info could be
localised, else return (None,None,None).

	
locatePlugins()

	Walk through the plugins’ places and look for plugins.

Return the candidates and number of plugins found.

	
removeAllAnalyzer()

	Remove all analyzers.

	
removeAnalyzers(name)

	Removes analyzers of a given name.

	
setAnalyzers(analyzers)

	Sets a new set of analyzers.

Warning

the new analyzers won’t be aware of the plugin
info class that may have been set via a previous
call to setPluginInfoClass.

	
setPluginInfoClass(picls, name=None)

	Set the class that holds PluginInfo. The class should inherit
from PluginInfo.

If name is given, then the class will be used only by the corresponding analyzer.

If name is None, the class will be set for all analyzers.

	
setPluginInfoExtension(ext)

	DEPRECATED(>1.9): for backward compatibility. Directly configure the
IPluginLocator instance instead !

This will only work if the strategy “info_ext” is active
for locating plugins.

	
setPluginPlaces(directories_list)

	Set the list of directories where to look for plugin places.

	
updatePluginPlaces(directories_list)

	Updates the list of directories where to look for plugin places.

IPluginLocator

Role

IPluginLocator defines the basic interface expected by a
PluginManager to be able to locate plugins and get basic info
about each discovered plugin (name, version etc).

API

	
class yapsy.IPluginLocator.IPluginLocator

	Plugin Locator interface with some methods already implemented to
manage the awkward backward compatible stuff.

	
gatherCorePluginInfo(directory, filename)

	Return a PluginInfo as well as the ConfigParser used to build it.

If filename is a valid plugin discovered by any of the known
strategy in use. Returns None,None otherwise.

	
getPluginInfoClass()

	DEPRECATED(>1.9): kept for backward compatibility
with existing PluginManager child classes.

Get the class that holds PluginInfo.

	
getPluginNameAndModuleFromStream(fileobj)

	DEPRECATED(>1.9): kept for backward compatibility
with existing PluginManager child classes.

Return a 3-uple with the name of the plugin, its
module and the config_parser used to gather the core
data in a tuple, if the required info could be
localised, else return (None,None,None).

	
locatePlugins()

	Walk through the plugins’ places and look for plugins.

Return the discovered plugins as a list of
(candidate_infofile_path, candidate_file_path,plugin_info_instance)
and their number.

	
setPluginInfoClass(picls, names=None)

	DEPRECATED(>1.9): kept for backward compatibility
with existing PluginManager child classes.

Set the class that holds PluginInfo. The class should inherit
from PluginInfo.

	
setPluginPlaces(directories_list)

	DEPRECATED(>1.9): kept for backward compatibility
with existing PluginManager child classes.

Set the list of directories where to look for plugin places.

	
updatePluginPlaces(directories_list)

	DEPRECATED(>1.9): kept for backward compatibility
with existing PluginManager child classes.

Updates the list of directories where to look for plugin places.

PluginManagerDecorator

Role

Provide an easy way to build a chain of decorators extending the
functionalities of the default plugin manager, when it comes to
activating, deactivating or looking into loaded plugins.

The PluginManagerDecorator is the base class to be inherited by
each element of the chain of decorator.

Warning

If you want to customise the way the plugins are detected
and loaded, you should not try to do it by implementing a
new PluginManagerDecorator. Instead, you’ll have to
reimplement the PluginManager itself. And if you
do so by enforcing the PluginManager interface, just
giving an instance of your new manager class to the
PluginManagerDecorator should be transparent to the
“stantard” decorators.

API

	
class yapsy.PluginManagerDecorator.PluginManagerDecorator(decorated_object=None, categories_filter=None, directories_list=None, plugin_info_ext='yapsy-plugin')

	Add several responsibilities to a plugin manager object in a
more flexible way than by mere subclassing. This is indeed an
implementation of the Decorator Design Patterns.

There is also an additional mechanism that allows for the
automatic creation of the object to be decorated when this object
is an instance of PluginManager (and not an instance of its
subclasses). This way we can keep the plugin managers creation
simple when the user don’t want to mix a lot of ‘enhancements’ on
the base class.

About the __init__:

Mimics the PluginManager’s __init__ method and wraps an
instance of this class into this decorator class.

	If the decorated_object is not specified, then we use the
PluginManager class to create the ‘base’ manager, and to do
so we will use the arguments: categories_filter,
directories_list, and plugin_info_ext or their
default value if they are not given.

	If the decorated object is given, these last arguments are
simply ignored !

All classes (and especially subclasses of this one) that want
to be a decorator must accept the decorated manager as an
object passed to the init function under the exact keyword
decorated_object.

	
collectPlugins()

	This function will usually be a shortcut to successively call
self.locatePlugins and then self.loadPlugins which are
very likely to be redefined in each new decorator.

So in order for this to keep on being a “shortcut” and not a
real pain, I’m redefining it here.

IMultiprocessChildPlugin

Role

Originally defined the basic interfaces for multiprocessed plugins.

Deprecation Note

This class is deprecated and replaced by IMultiprocessChildPlugin.

Child classes of IMultiprocessChildPlugin used to be an IPlugin as well as
a multiprocessing.Process, possibly playing with the functionalities of both,
which make maintenance harder than necessary.

And indeed following a bug fix to make multiprocess plugins work on Windows,
instances of IMultiprocessChildPlugin inherit Process but are not exactly the
running process (there is a new wrapper process).

API

	
class yapsy.IMultiprocessChildPlugin.IMultiprocessChildPlugin(parent_pipe)

	Base class for multiprocessed plugin.

DEPRECATED(>1.11): Please use IMultiProcessPluginBase instead !

	
run()

	Override this method in your implementation

MultiprocessPluginProxy

Role

The MultiprocessPluginProxy is instanciated by the MultiprocessPluginManager to replace the real implementation
that is run in a different process.

You cannot access your plugin directly from the parent process. You should use the child_pipe to communicate
with your plugin. The MultiprocessPluginProxy` role is to keep reference of the communication pipe to the
child process as well as the process informations.

API

	
class yapsy.MultiprocessPluginProxy.MultiprocessPluginProxy

	This class contains two members that are initialized by the MultiprocessPluginManager.

self.proc is a reference that holds the multiprocessing.Process instance of the child process.

self.child_pipe is a reference that holds the multiprocessing.Pipe instance to communicate with the child.

General advices and troubleshooting

	Getting code samples

	Use the logging system

	Categorization by inheritance caveat

	Plugin class detection caveat

	Plugin packaging

	Code conventions

Getting code samples

Yapsy is used enough for your favorite search provider to have good
chances of finding some examples of yapsy being used in the wild.

However if you wonder how a specific functionality can be used, you
can also look at the corresponding unit test (in the test folder
packaged with yapsy’s sources).

Use the logging system

Yapsy uses Python’s standard logging module to record most
important events and especially plugin loading failures.

When developping an application based on yapsy, you’ll benefit from
looking at the ‘debug’ level logs, which can easily be done from your
application code with the following snippet:

import logging
logging.basicConfig(level=logging.DEBUG)

Also, please note that yapsy uses a named logger for all its logs, so
that you can selectively activage debug logs for yapsy with the
following snippet:

import logging
logging.getLogger('yapsy').setLevel(logging.DEBUG)

Categorization by inheritance caveat

If your application defines various categories of plugins with the yapsy’s built-in mechanism for that, please keep in mind the following facts:

	a plugin instance is attributed to a given category by looking if
it is an instance, even via a subclass, of the class associated
to this category;

	a plugin may be attributed to several categories.

Considering this, and if you consider using several categories, you
should consider the following tips:

	don’t associate any category to ``IPlugin`` (unless you want
all plugins to be attributed to the corresponding category)

	design a specific subclass of IPlugin for each category

	if you want to regroup plugins of some categories into a common
category: do this by attributing a subclass of IPlugin to the
common category and attribute to the other categories specific
subclasses to this intermediate mother class so that the plugin
class inheritance hierarchy reflects the hierarchy between
categories (and if you want something more complex that a
hierarchy, you can consider using mixins).

Plugin class detection caveat

There must be only one plugin defined per module. This means that
you can’t have two plugin description files pointing at the same
module for instance.

Because of the “categorization by inheritance” system, you musn’t
directly import the subclass of IPlugin in the main plugin file,
instead import its containing module and make your plugin class
inherit from ContainingModule.SpecificPluginClass as in the
following example.

The following code won’t work (the class MyBasePluginClass will be
detected as the plugin’s implementation instead of MyPlugin):

from myapp.plugintypes import MyBasePluginClass

class MyPlugin(MyBasePluginClass):
 pass

Instead you should do the following:

import myapp.plugintypes as plugintypes

class MyPlugin(plugintypes.MyBasePluginClass):
 pass

Plugin packaging

When packaging plugins in a distutils installer or as parts of an
application (like for instance with py2exe), you may want to take
care about the following points:

	when you set specific directories where to look for plugins with a
hardcoded path, be very carefully about the way you write these
paths because depending on the cases using ``__file__`` or
relative paths may be unreliable. For instance with py2exe, you
may want to follow the tips from the Where Am I FAQ [http://www.py2exe.org/index.cgi/WhereAmI].

	you’d should either package the plugins as plain Python modules or
data files (if you want to consider you application as the only
module), either using the dedicated setup argument for py2exe or
using distutils’ MANIFEST.in

	if you do package the plugins as data files, make sure that their
dependencies are correctly indicated as dependencies of your
package (or packaged with you application if you use py2exe).

See also a more detailed example for py2exe on Simon on Tech’s Using python plugin scripts with py2exe [http://notinthestars.blogspot.com.es/2011/04/using-python-plugin-scripts-with-py2exe.html].

Code conventions

If you intend to modify yapsy’s sources and to contribute patches
back, please respect the following conventions:

	CamelCase (upper camel case) for class names and functions

	camelCase (lower camel case) for methods

	UPPERCASE for global variables (with a few exceptions)

	tabulations are used for indentation (and not spaces !)

	unit-test each new functionality

 Python Module Index

 y

 		 	

 		
 y	

 	[image: -]
 	
 yapsy	

 	
 	
 yapsy.AutoInstallPluginManager	

 	
 	
 yapsy.ConfigurablePluginManager	

 	
 	
 yapsy.FilteredPluginManager	

 	
 	
 yapsy.IMultiprocessChildPlugin	

 	
 	
 yapsy.IPlugin	

 	
 	
 yapsy.IPluginLocator	

 	
 	
 yapsy.MultiprocessPluginManager	

 	
 	
 yapsy.MultiprocessPluginProxy	

 	
 	
 yapsy.PluginFileLocator	

 	
 	
 yapsy.PluginInfo	

 	
 	
 yapsy.PluginManager	

 	
 	
 yapsy.PluginManagerDecorator	

 	
 	
 yapsy.VersionedPluginManager	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | V
 | W
 | Y

A

 	
 	activate() (yapsy.IPlugin.IPlugin method)

 	activatePluginByName() (yapsy.ConfigurablePluginManager.ConfigurablePluginManager method)

 	(yapsy.PluginManager.PluginManager method)

 	appendAnalyzer() (yapsy.PluginFileLocator.PluginFileLocator method)

 	
 	appendPluginCandidate() (yapsy.FilteredPluginManager.FilteredPluginManager method)

 	(yapsy.PluginManager.PluginManager method)

 	appendPluginToCategory() (yapsy.PluginManager.PluginManager method)

 	author (yapsy.PluginInfo.PluginInfo attribute)

 	AutoInstallPluginManager (class in yapsy.AutoInstallPluginManager)

C

 	
 	category (yapsy.PluginInfo.PluginInfo attribute)

 	collectPlugins() (yapsy.PluginManager.PluginManager method)

 	(yapsy.PluginManagerDecorator.PluginManagerDecorator method)

 	
 	CONFIG_SECTION_NAME (yapsy.ConfigurablePluginManager.ConfigurablePluginManager attribute)

 	ConfigurablePluginManager (class in yapsy.ConfigurablePluginManager)

 	copyright (yapsy.PluginInfo.PluginInfo attribute)

D

 	
 	deactivate() (yapsy.IPlugin.IPlugin method)

 	deactivatePluginByName() (yapsy.ConfigurablePluginManager.ConfigurablePluginManager method)

 	(yapsy.PluginManager.PluginManager method)

 	
 	description (yapsy.PluginInfo.PluginInfo attribute)

 	details (yapsy.PluginInfo.PluginInfo attribute)

 	disableRecursiveScan() (yapsy.PluginFileLocator.PluginFileLocator method)

F

 	
 	FilteredPluginManager (class in yapsy.FilteredPluginManager)

 	
 	filterPlugins() (yapsy.FilteredPluginManager.FilteredPluginManager method)

G

 	
 	gatherCorePluginInfo() (yapsy.IPluginLocator.IPluginLocator method)

 	(yapsy.PluginFileLocator.PluginFileLocator method)

 	get() (yapsy.PluginManager.PluginManagerSingleton class method)

 	getAllPlugins() (yapsy.PluginManager.PluginManager method)

 	getCategories() (yapsy.PluginManager.PluginManager method)

 	getInfosDictFromPlugin() (yapsy.PluginFileLocator.IPluginFileAnalyzer method)

 	(yapsy.PluginFileLocator.PluginFileAnalyzerMathingRegex method)

 	(yapsy.PluginFileLocator.PluginFileAnalyzerWithInfoFile method)

 	getInstallDir() (yapsy.AutoInstallPluginManager.AutoInstallPluginManager method)

 	getLatestPluginsOfCategory() (yapsy.VersionedPluginManager.VersionedPluginManager method)

 	getPluginByName() (yapsy.PluginManager.PluginManager method)

 	
 	getPluginCandidates() (yapsy.PluginManager.PluginManager method)

 	getPluginInfoClass() (yapsy.IPluginLocator.IPluginLocator method)

 	(yapsy.PluginManager.PluginManager method)

 	getPluginLocator() (yapsy.PluginManager.PluginManager method)

 	getPluginNameAndModuleFromStream() (yapsy.IPluginLocator.IPluginLocator method)

 	(yapsy.PluginFileLocator.PluginFileAnalyzerWithInfoFile method)

 	(yapsy.PluginFileLocator.PluginFileLocator method)

 	getPluginsOf() (yapsy.PluginManager.PluginManager method)

 	getPluginsOfCategory() (yapsy.PluginManager.PluginManager method)

 	getPluginsOfCategoryFromAttic() (yapsy.VersionedPluginManager.VersionedPluginManager method)

 	getRejectedPlugins() (yapsy.FilteredPluginManager.FilteredPluginManager method)

H

 	
 	hasOptionFromPlugin() (yapsy.ConfigurablePluginManager.ConfigurablePluginManager method)

I

 	
 	IMultiprocessChildPlugin (class in yapsy.IMultiprocessChildPlugin)

 	install() (yapsy.AutoInstallPluginManager.AutoInstallPluginManager method)

 	installFromZIP() (yapsy.AutoInstallPluginManager.AutoInstallPluginManager method)

 	instanciateElement() (yapsy.PluginManager.PluginManager method)

 	instanciateElementWithImportInfo() (yapsy.MultiprocessPluginManager.MultiprocessPluginManager method)

 	(yapsy.PluginManager.PluginManager method)

 	IPlugin (class in yapsy.IPlugin)

 	
 	IPluginFileAnalyzer (class in yapsy.PluginFileLocator)

 	IPluginLocator (class in yapsy.IPluginLocator)

 	is_activated (yapsy.PluginInfo.PluginInfo attribute)

 	isPluginOk() (yapsy.FilteredPluginManager.FilteredPluginManager method)

 	isValidPlugin() (yapsy.PluginFileLocator.IPluginFileAnalyzer method)

 	(yapsy.PluginFileLocator.PluginFileAnalyzerMathingRegex method)

 	(yapsy.PluginFileLocator.PluginFileAnalyzerWithInfoFile method)

L

 	
 	loadPlugins() (yapsy.ConfigurablePluginManager.ConfigurablePluginManager method)

 	(yapsy.PluginManager.PluginManager method)

 	(yapsy.VersionedPluginManager.VersionedPluginManager method)

 	
 	locatePlugins() (yapsy.FilteredPluginManager.FilteredPluginManager method)

 	(yapsy.IPluginLocator.IPluginLocator method)

 	(yapsy.PluginFileLocator.PluginFileLocator method)

 	(yapsy.PluginManager.PluginManager method)

M

 	
 	MultiprocessPluginManager (class in yapsy.MultiprocessPluginManager)

 	
 	MultiprocessPluginProxy (class in yapsy.MultiprocessPluginProxy)

N

 	
 	name (yapsy.PluginInfo.PluginInfo attribute)

 	
 	NormalizePluginNameForModuleName() (in module yapsy)

P

 	
 	path (yapsy.PluginInfo.PluginInfo attribute)

 	PLUGIN_NAME_FORBIDEN_STRING (in module yapsy)

 	PluginFileAnalyzerMathingRegex (class in yapsy.PluginFileLocator)

 	PluginFileAnalyzerWithInfoFile (class in yapsy.PluginFileLocator)

 	
 	PluginFileLocator (class in yapsy.PluginFileLocator)

 	PluginInfo (class in yapsy.PluginInfo)

 	PluginManager (class in yapsy.PluginManager)

 	PluginManagerDecorator (class in yapsy.PluginManagerDecorator)

 	PluginManagerSingleton (class in yapsy.PluginManager)

R

 	
 	readOptionFromPlugin() (yapsy.ConfigurablePluginManager.ConfigurablePluginManager method)

 	registerOptionFromPlugin() (yapsy.ConfigurablePluginManager.ConfigurablePluginManager method)

 	rejectPluginCandidate() (yapsy.FilteredPluginManager.FilteredPluginManager method)

 	removeAllAnalyzer() (yapsy.PluginFileLocator.PluginFileLocator method)

 	
 	removeAnalyzers() (yapsy.PluginFileLocator.PluginFileLocator method)

 	removePluginCandidate() (yapsy.FilteredPluginManager.FilteredPluginManager method)

 	(yapsy.PluginManager.PluginManager method)

 	removePluginFromCategory() (yapsy.PluginManager.PluginManager method)

 	run() (yapsy.IMultiprocessChildPlugin.IMultiprocessChildPlugin method)

S

 	
 	setAnalyzers() (yapsy.PluginFileLocator.PluginFileLocator method)

 	setBehaviour() (yapsy.PluginManager.PluginManagerSingleton class method)

 	setCategoriesFilter() (yapsy.PluginManager.PluginManager method)

 	(yapsy.VersionedPluginManager.VersionedPluginManager method)

 	setConfigParser() (yapsy.ConfigurablePluginManager.ConfigurablePluginManager method)

 	setInstallDir() (yapsy.AutoInstallPluginManager.AutoInstallPluginManager method)

 	setPluginInfoClass() (yapsy.IPluginLocator.IPluginLocator method)

 	(yapsy.PluginFileLocator.PluginFileLocator method)

 	(yapsy.PluginManager.PluginManager method)

 	
 	setPluginInfoExtension() (yapsy.PluginFileLocator.PluginFileAnalyzerWithInfoFile method)

 	(yapsy.PluginFileLocator.PluginFileLocator method)

 	(yapsy.PluginManager.PluginManager method)

 	setPluginLocator() (yapsy.PluginManager.PluginManager method)

 	setPluginPlaces() (yapsy.IPluginLocator.IPluginLocator method)

 	(yapsy.PluginFileLocator.PluginFileLocator method)

 	(yapsy.PluginManager.PluginManager method)

 	setVersion() (yapsy.PluginInfo.PluginInfo method)

 	(yapsy.VersionedPluginManager.VersionedPluginInfo method)

U

 	
 	unrejectPluginCandidate() (yapsy.FilteredPluginManager.FilteredPluginManager method)

 	updatePluginPlaces() (yapsy.IPluginLocator.IPluginLocator method)

 	(yapsy.PluginFileLocator.PluginFileLocator method)

 	(yapsy.PluginManager.PluginManager method)

V

 	
 	version (yapsy.PluginInfo.PluginInfo attribute)

 	
 	VersionedPluginInfo (class in yapsy.VersionedPluginManager)

 	VersionedPluginManager (class in yapsy.VersionedPluginManager)

W

 	
 	website (yapsy.PluginInfo.PluginInfo attribute)

Y

 	
 	yapsy (module)

 	yapsy.AutoInstallPluginManager (module)

 	yapsy.ConfigurablePluginManager (module)

 	yapsy.FilteredPluginManager (module)

 	yapsy.IMultiprocessChildPlugin (module)

 	yapsy.IPlugin (module)

 	yapsy.IPluginLocator (module)

 	
 	yapsy.MultiprocessPluginManager (module)

 	yapsy.MultiprocessPluginProxy (module)

 	yapsy.PluginFileLocator (module)

 	yapsy.PluginInfo (module)

 	yapsy.PluginManager (module)

 	yapsy.PluginManagerDecorator (module)

 	yapsy.VersionedPluginManager (module)

 _static/plus.png

_static/yapsy-big.png

_static/up-pressed.png

_static/up.png

_images/badge.png
‘coverage 92%

_images/yapsy.png
“build passing

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Yapsy: Yet Another Plugin SYstem

 		
 IPlugin

 		
 Role

 		
 Extensibility

 		
 API

 		
 PluginManager

 		
 Role

 		
 Plugin Description Policy

 		
 Plugin Info File Format

 		
 Changing the default behaviour

 		
 Extensibility

 		
 API

 		
 PluginInfo

 		
 Role

 		
 API

 		
 Built-in Extensions

 		
 VersionedPluginManager

 		
 Role

 		
 API

 		
 ConfigurablePluginManager

 		
 Role

 		
 API

 		
 AutoInstallPluginManager

 		
 Role

 		
 API

 		
 FilteredPluginManager

 		
 Role

 		
 API

 		
 MultiprocessPluginManager

 		
 Role

 		
 API

 		
 PluginFileLocator

 		
 Role

 		
 API

 		
 IPluginLocator

 		
 Role

 		
 API

 		
 PluginManagerDecorator

 		
 Role

 		
 API

 		
 IMultiprocessChildPlugin

 		
 Role

 		
 Deprecation Note

 		
 API

 		
 MultiprocessPluginProxy

 		
 Role

 		
 API

 		
 General advices and troubleshooting

 		
 Getting code samples

 		
 Use the logging system

 		
 Categorization by inheritance caveat

 		
 Plugin class detection caveat

 		
 Plugin packaging

 		
 Code conventions

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

